Directing JavaScript with Arrows

Khoo Yit Phang ~ Michael Hicks

University of Maryland, College Park
{khooyp,mwh,jfoster,vibha}@cs.umd.edu

Abstract

Event-driven programming in JavaScript often leads to code that
is messy and hard to maintain. We have found arrows, a general-
ization of monads, to be an elegant solution to this problem. Our
arrow-based Arrowlets library makes it easy to compose event-
driven programs in modular units of code. In particular, we show
how to implement drag-and-drop modularly using arrows.

1. Event-driven JavaScript is Messy

JavaScript is the lingua franca of Web 2.0, and is the basis of highly
interactive web applications such as Google Maps and Flickr. Be-
cause JavaScript code runs in a client-side web browser, applica-
tions can present a rich, responsive interface without the latency
associated with client-server communication.

JavaScript, however, is a single-threaded language that has to
cooperate with the web browser’s user interface. The JavaScript
API is designed in event-driven style, and it is crucial that event
callbacks execute quickly so that new events are handled in a timely
fashion. Long-running loops, animations, and state machines are
typically implemented by chaining callbacks, each of which ends
by registering one or more additional callbacks. Unfortunately,
writing this style of code is typically tedious, error-prone, and non-
modular because the callback chaining code (the “plumbing”) is
often hard-coded and strewn throughout the program.

Drag-and-drop is a prototypical example that illustrates these
issues. Figure 1 shows a common way to implement drag-and-drop
in JavaScript. The four states—setup, drag, drop and cancel—are
implemented as event handlers, and each handler is responsible
for installing handlers for the next states. For example, when setup
executes, it has to disable itself (line 4) and install drag and cancel
(lines 5-6). Since the states are hard-coded, we cannot re-use setup
in another application, and if we want to insert a new state in the
state machine, we may need to edit several different handlers.

2. Arrows Point the Way

Inspired by libraries such as Fudgets (Carlsson and Hallgren 1993)
and Yampa (Hudak et al. 2003) in Haskell, we discovered that
arrows (Hughes 2000), a generalization of monads, is an elegant
way to compose event-driven programs in JavaScript.

Arrows support at least two operations: arr f lifts a function f
into an arrow, and f >3> g composes a new arrow where g is ap-
plied to the output of f. Figure 2 shows two (very) simplified def-
initions of function arrows. In Haskell, we define function arrows
as the Arrow (—) type with arr as the identity function and >>
as function composition. In JavaScript, we extend every function
object with the arrow interface by adding the methods A and next,
equivalent to arr and >3, to the built-in Function. prototype object.

We can apply arrows to the observation that event listener func-
tions such as addEventListener are continuation passing style (CPS)
functions where the callbacks are the continuations. By abstracting

Jeffrey S. Foster ~ Vibha Sazawal
mousemove
mousedown mousemove mouseup
T @
mouseup

1 function setup(event) { /x likewise for drag, drop, cancel */

2 var target = event.currentTarget;

3 /* setup drag—and—drop */

4 target .removeEventListener("mousedown", setup, false);

5 target .addEventListener("mousemove", drag, false);

6 target .addEventListener("mouseup", cancel, false);

7}

8

9 document.getElementByld("dragtarget")

10 .addEventListener("mousedown", setup, false);
Figure 1: Drag-and-drop state diagram and JavaScript code

1 instance Arrow (—) where

2 arr f =f

3 (f>>¢) x=g ()

4

5 addl x=x+1

6 add2 = addl >> addl

7 result = add2 1 {— returns 3 —}

1 Function.prototype.A = function() { /* arr */

2 return this ;

<}

4 Function. prototype.next = function(g) { /* >> */

5 var f = this; g = g.A(); /* ensure g is a function x/

6 return function (x) { return g(f(x)); }

7}

8

9 function addl(x) { return x + 1; }

10 var add2 = addl.next(add1);

11 var result = add2(1); /* returns 3 %/

Figure 2: Function arrows in Haskell (top) and JavaScript (bottom)

event listeners into a library of CPS arrows, we can still write event
handlers as regular functions, and use arrow operations to lift and
compose handlers with listeners. This nicely encapsulates the event
handling code in arrows, and the plumbing in arrow combinators,
thereby separating them and making re-use practical.

3. Arrowlets

Following this inspiration, we developed Arrowlets, a JavaScript
library for event-driven programming. The core building block of
the Arrowlets library is the AsyncA arrow prototype, from which
all arrows are built. A simplified version of AsyncA is shown in
Figure 3. The AsyncA constructor (lines 2—4) creates an arrow

/* AsyncA is the prototype for asynchronous arrows x/
function AsyncA(cps) { /* constructor */
this .cps = cps; /* cps = (x, k) — () */

1
2

3

4

5 AsyncA.prototype.AsyncA = function() { /* identity */
6 return this;

;

8

AsyncA .prototype.next = function(g) { /* sequencing x/

9 var f = this; g = g.AsyncA();

10 /* CPS function composition */

11 return new AsyncA(function(x, k) {

12 f.cps(x, function(y) { g.cps(y, k); });

13 138

14}

15 AsyncA.prototype.run = function(x) { /* running x/
16 this .cps(x, function(y) {});

17

18 Function. prototype.AsyncA = function() { /* lifting */
19 var f = this; /* wrap f in CPS function x/

20 return new AsyncA(function(x, k) { k(f(x)); });

23 /* An EventA arrow waits for an event to fire on a target x/

2 function EventA(eventname) { /* constructor */

25 if (!(this instanceof EventA)) return new EventA(eventname);
26 this .eventname = eventname;

28 EventA.prototype = new AsyncA(function(target, k) {
29 var f = this;

30 function handler(event) {

31 target .removeEventListener(f.eventname, handler, false);
32 k(event); }

33 target . addEventListener(f.eventname, handler, false);

4 })

dragDropOrCancelA

. mousemove — dragA — Repeat

My : : :
mousedown _ | mouseup —» dropA — Done :
/; mousemove — dragA / . :
selupA4< ,,,,,,,,,,,,,,,,,,,,,,,,,,

' mouseup —cancelA

function setupA(event) { /* likewise for dragA, dropA, cancelA x/
/* setup drag—and—drop */
return event. currentTarget ;

}

var dragOrDropA =
((EventA("mousemove").next(dragA).next(Repeat))
.or(EventA("mouseup").next(dropA).next(Done))
). repeat ();

11 var dragDropOrCancelA =
12 (EventA("mousemove").next(dragA).next(dragOrDropA))
13 .or(EventA("mouseup").next(cancelA));

15 var dragAndDropA = /x drag—and—drop */
16 EventA("mousedown").next(setupA).next(dragDropOrCancelA);
17 ElementA("dragtarget").next(dragAndDropA).run();

19 var jigsawA = /* alternative use of dragOrDropA */

20 (nextPieceA
21 .next((dragOrDropA.next(repeatlfWrongPlaceA)).repeat())
2). repeat ();

Figure 3: Simplified AsyncA arrow prototype and EventA arrow

around a cps function, and arrow combinators such as next (lines 8—
14) are implemented in CPS. We can execute an AsyncA arrow
by invoking the run method (lines 15-17), which calls cps with
an input x and an empty terminal continuation. Finally, we extend
Function. prototype with an AsyncA method to lift a regular function
into an AsyncA arrow (lines 18-21).

With AsyncA, we can define the EventA event listener arrow.
The EventA constructor (lines 24—27) creates an arrow that listens
to an event named eventname. The constructor contains a conve-
nient JavaScript idiom (line 25) that allows us to create EventA ar-
rows without using the new operator. EventA inherits from AsyncA
(lines 28-34), and is built around a CPS function that listens for
an event. When EventA executes, it first installs a stub event han-
dler on the input target element. After the event fires, it uninstalls
the stub event handler, and invokes the continuation k—the next ar-
row and actual event handler—with the received event. We chose
to uninstall the event handler as this corresponds to transitions in a
state machine, which is one of our motivating use cases.

Our library also provides other arrows, e.g., the ElementA arrow
that ignores its input and returns a specified element from the host
HTML document. We also provide additional combinators such
as repeat, which puts an arrow in a loop; the arrow may return
Repeat(x) to run another iteration, or Done(x) to end the loop.
Another useful combinator is or, which composes two event arrows
and allows only one, whichever is triggered first, to execute.

4. Drag-and-Drop with Arrowlets

Figure 4 shows how we can use Arrowlets to implement drag-
and-drop in an intuitive and modular way. As before, we write four
event handlers—setupA, dragA, dropA and cancel A—corresponding
to the four states in drag-and-drop. Like setup in Figure 1, setupA
(lines 1-4) is written as a regular function, but in contrast, it does
not contain any callback plumbing code. Since it is not tied to the
other handlers, it can be re-used in other applications.

Figure 4: Drag-and-drop arrow diagram and code

The plumbing that composes the handlers has been extracted
into the remainder of the code in Figure 4. We use various arrow
combinators to compose the handlers and appropriate event listen-
ers into the drag-and-drop state machine. We can also organize the
composition modularly in three parts. For example, the first part,
dragOrDropA (lines 6-9), is a repeat loop that handles the dragging
animation during mousemove events, and the dropping action after
a mouseup. In addition to drag-and-drop (lines 15-17), we can even
re-use dragOrDropA in a jigsaw puzzle game (lines 19-22).

Finally, this drag-and-drop composition, shown graphically
above Figure 4, mirrors the state diagram in Figure 1. We find it
quite intuitive to convert a state diagram into an arrow composition.

In conclusion, arrows makes it easy to write event-driven pro-
grams in an intuitive and modular way. The Arrowlets library is
available at our website (http://www.cs.umd.edu/projects/
PL/arrowlets), along with a technical report, API documentation
and several live examples.

Acknowledgments

This research was supported in part by National Science Founda-
tion grants IIS-0613601 and CCF-0541036.

References

Magnus Carlsson and Thomas Hallgren. Fudgets: a graphical user interface
in a lazy functional language. In FPCA ’93: Proceedings of the confer-
ence on Functional programming languages and computer architecture,
pages 321-330, New York, NY, USA, 1993. ACM. ISBN 0-89791-595-
X. doi: http://doi.acm.org/10.1145/165180.165228.

Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows,
robots, and functional reactive programming. In Advanced Functional
Programming, 4th International School, volume 2638 of LNCS, pages
159-187. Springer-Verlag, 2003.

John Hughes. Generalising monads to arrows. Science of Computer Pro-
gramming, 37:67-111, May 2000. URL http://www.cs.chalmers.
se/"rjmh/Papers/arrows.ps.

